Анализ углерода, серы и фосфора

Сталь - наиболее распространенный сплав железа с углеродом, в который входит ряд неизбежных примесей (Мп, Si, S, Р, О, N, Н и др.). Все они оказывают влияние на свойства стали, поэтому химический анализ - обязательный элемент системы качества на предприятии.

  • Анализ на углерод. Углерод - основной компонент стали, который представлен в ней в разных формах, и определяет его марку и основные свойства.
  • Анализ на серу и фосфор. Сера и фосфор трудноудаляемые элементы, которые попадают при выплавке стали в основном из чугуна. Они считаются вредными примесями, так как ухудшают качество стали. Максимально допустимое содержание серы не более 0,06%, а фосфора - 0,05%. В ходе плавки металла стараются провести мероприятия по десульфурации и дефосфорации, чтобы снизить влияние этих элементов.

Влияние углерода, серы и фосфора на качество стали

Определение углерода, серы и фосфора в стали для металлургов, литейщиков и машиностроителей имеет первоочередную важность. Это позволяет получить качественную продукцию и исключить неисправимый брак. Государственные стандарты регламентируют содержание примесей в стали и методы определения их содержания.

Углерод в стали

Углерод - полиморфный неметаллический элемент, который способен растворяться в железе в жидком и твердом состоянии с образованием твердых растворов - феррита и аустенита. Кроме этого, он создает с железом химическое соединение - цементит (Fe3C), и может быть представлен в высокоуглеродистых сталях в виде графита.

В зависимости от содержания углерода стали классифицируются на:

  • низкоуглеродистые (до 0,3% С);
  • среднеуглеродистые (0,3-0,6% С);
  • высокоуглеродистые (более 0,6% С).

Содержание углерода оказывает влияние на структуру стали, количество и соотношение фаз, поэтому определяет показатели твердости и пластичности металла. При повышении содержания углерода происходит снижение ударной вязкости, и повышается порог хладноломкости. Увеличение концентрации C приводит к изменению и электрических свойств: растет сопротивление и коэрцитивная сила, уменьшается магнитная проницаемость и плотность магнитной индукции.

С ростом углерода происходит ухудшение литейных свойств, обрабатываемость давлением, резанием и свариваемость. Обработка резанием низкоуглеродистых сталей также затрудняется.

Сера в стали

Сера - вредная примесь, основными источниками которой служат передельный чугун и руда, используемые при выплавке стали. Она способна растворяться в жидком железе, а в процессе кристаллизации образует FeS. Сульфид железа образует с железом эвтектику с низкой температурой плавления, которая располагается по границам зерен. При технологическом нагреве до температуры обработки металла давлением она оплавляется, а при деформировании становится причиной надрывов и трещин. Это явление называется красноломкостью, так как сталь при температуре 900-1000℃ становится ярко-красного цвета.

Повышение содержания серы нелинейно влияет на порог хладноломкости: сначала происходит его повышение, а при повышении содержания MnS он понижается. Негативное влияние сера оказывает на свариваемость и коррозионную стойкость.

Фосфор в стали

Фосфор относится к вредным примесям стали, источником которой служат шихтовые материалы, в основном - чугун. Он способен в значительных количествах растворяться в феррите, что приводит к искажению кристаллической решетки. Одновременно с этим происходит увеличение временного сопротивления и предела текучести, уменьшение пластичности и вязкости. Увеличение содержания фосфора становится причиной повышения порога хладноломкости и уменьшения работы развития трещины.

Фосфор в значительной мере подвержен ликвации, что приводит к резкому снижению вязкости в центральной части слитка. В настоящее время технологии глубокой очистки стали от фосфора не существует.

Оптико-эмиссионный спектральный анализ C, S, P.

Оптико-эмиссионные спектрометры - универсальные приборы, которые способны решать широкий круг аналитических задач. В основу их работы лежат принципы атомно-эмиссионного спектрального анализа элементного состава вещества:

  • спектр возбужденных атомов и ионов индивидуален для каждого элемента;
  • интенсивность спектральной линии находится в зависимости от концентрации элемента в исследуемой пробе.

Эмиссионные спектральные приборы находят широкое применение в металлургии, что обусловлено следующими преимуществами метода:

  • Возможность исследования проб в различном агрегатном состоянии.
  • Анализ носит неразрушающий характер.
  • Количество исследуемых элементов практически не ограничено. В их число входят углерод, сера и фосфор, которые представляют особый интерес для металлургов.
  • Для проведения исследования в качестве пробы достаточно малого количества вещества.
  • Высокая чувствительность и точность.
  • Экспрессность.
  • Возможность проведения сертификационного анализа.

Для анализа углерода, серы и фосфора с использованием эмиссионных спектрометров должны быть созданы в приборе определенные условия, а именно: бескислородная атмосфера. В противном случае определить элементы, длина волны которых короче 185 нм, не представляется возможным. В настоящее время удаление кислорода в приборе осуществляется двумя способами:

  • путем прокачки инертным газом;
  • вакуумированием.

Каждая из систем декислородизации имеет определенные особенности эксплуатации и обслуживания, поэтому при выборе прибора для анализа углерода, серы и фосфора следует учитывать их преимущества и недостатки. Это позволит подобрать спектрометр, который оптимально соответствует аналитической задаче, требованиям к точности результатов исследований и имеет удовлетворительные экономические показатели.

Оптико-эмиссионные приборы, предусматривающие прокачку инертным газом

В спектральных приборах для декислородизации используют чаще всего аргон. Для удаления кислорода предусматривается одна из следующих систем:

  • Открытая. В результате продувки происходит вытеснение кислорода, а инертный газ удаляется из прибора в окружающую атмосферу.
  • Замкнутая. При прохождении инертного газа происходит захват кислорода, который в дальнейшем очищается с помощью фильтра. Газ продолжает движение по замкнутой системе, давление в которой обеспечивает насос.

Приборы с открытой системой декислородизации отличаются простотой конструкции и меньшей стоимостью. Однако в этом случае степень очистки находится на низком уровне, а аргон расходуется безвозвратно. Применение подобных спектрометров целесообразно при пониженных требованиях к аналитическим характеристикам, как со стороны потребителя, так и со стороны производителя.

Конструкция приборов с замкнутой системой декислодизации усложняется, так как для обеспечения функциональности необходимы дополнительные компоненты и их обслуживание:

  • Насос с блоком питания.
  • Баллон с газом для компенсации потерь.
  • Дополнительный фильтрующий элемент.

Каждый из этих компонентов прибора требует обслуживания, а расходные материалы - замены, что связано с дополнительными расходами. Кроме этого, в результате непрофессиональных действий обслуживающего персонала возникает риск завоздушить систему при замене фильтра. Ликвидация последствий этого требует не только с дополнительных материальных затрат, но и времени.

Оптико-эмиссионные приборы с системой вакуумирования

Система вакуумирования позволяет получить низкую остаточную концентрацию кислорода, которая во много раз ниже, чем в открытой системе декислородизации, и сопоставима с лучшими результатами, полученными в замкнутых. Следует отметить, что при этом нет необходимости использования инертного газа.

Такая система удаления кислорода применяется в наиболее совершенных спектральных приборах. В них установлен масляный насос, который дополняется специальными ловушками для масла. Кроме этого, предусмотрен клапан, который при аварийном отключении электропитания, не допускает повреждения спектрометра маслом в результате его проникновения в вакуумную магистраль.

Двухступенчатые масляные форвакуумные насосы - наиболее предпочтительное оборудование по сравнению безмасляными мембранными моделями. Они имеют сопоставимую стоимость, но при этом в десятки раз превосходят последние по степени удаления кислорода, а также обладают значительным ресурсом и намного проще в обслуживании.

Универсальные настольные и стационарные спектрометры Искролайн 100/300 - отличные образцы приборов, в которых для удаление кислорода  реализована система вакуумирования. Они способны определять более 70 элементов, в число которых входят углерод, сера и фосфор, с пределом детектирования до 0,0001% Приборы позволяют быстро и точно проводить спектральный анализ сталей, и отличаются высоким спектральным разрешением, высокой сходимостью результатов измерений и высоким качеством изготовления.

Наша продукция