Неразрушающий спектральный контроль состава металла изделий

Любое литейное и металлообрабатывающее производство не может обойтись без систем контроля своей продукции. Снижение качества поставляемых изделий стало большой проблемой для отечественных предприятий, которые теперь вынуждены закупать требуемые материалы за границей. Именно поэтому важным фактором на производстве является система контроля поставляемой продукции и контроль изделий.

Методы контроля изделий на производстве

Методы химического анализа являются основными при определении состава различных веществ. Современный химический анализ металлов и сплавов является важным этапом экспертизы, которая используется для определения качества продукции и проверки ее соответствия текущим стандартам. Без этой процедуры не проводятся технологические процессы в отрасли производства сталей, она необходима при создании и выпуске новых материалов, а также контроле выпускаемой продукции современными предприятиями. От правильности и точности проведенного анализа будет зависеть качество и надежность будущей продукции, которая производится с использованием металлов и их сплавов.

Однако очень часто возникает необходимость повысить оперативность контроля, а также иметь возможность автоматизировать контроль. В связи с этим были разработаны физико-химические и физические методы определения состава материалов. Среди этих методов одно из главных мест занимает спектральный анализ.

Преимущества метода

Благодаря высокой избирательности, оказывается возможным быстро и с высокой чувствительностью определить химический состав анализируемого материала. Исследовать состав металла по спектру можно без нарушения его пригодности к использованию, т.е. можно проводить неразрушающий контроль образцов. Несмотря на громадное число аналитических методик, предназначенных для исследования различных объектов, все они основаны на общей принципиальной схеме: каждому химическому элементу принадлежит свой спектр.

Благодаря индивидуальности спектров имеется возможность определить химический состав тела. Сравнительная простота и универсальность спектрального анализа сделали метод основным методом контроля состава вещества в металлургии, машиностроении, атомной промышленности. С его помощью определяют химический руд и минералов, особое место в этой области занимает неразрушающий контроль металлов.

Принцип метода

Для проведения исследования вещество необходимо испарить, так как свет, излучаемый веществом в газообразном состоянии, определяется химическим составом этого вещества, в отличие от света, излучаемого твердыми телами или жидкостями. Для испарения и возбуждения вещества используют высокотемпературное пламя, различного типа электрические разряды в газах: дуга, искра и т. д.

Высокая температура в разрядах (тысячи и десятки тысяч градусов) приводит к распаду молекул большинства веществ на атомы. Поэтому эмиссионные методы служат, как правило, для атомного анализа и очень редко – молекулярного. Излучение паров вещества складывается из излучения атомов всех элементов. Для исследования необходимо выделить излучение каждого элемента.

Задачи изучения спектров

Точность атомного спектрального анализа зависит, главным образом, от состава и структуры исследуемых объектов. Анализировать состав близких по своей структуре и составу образцов, можно с погрешностью ±1 – 3% по отношению к определяемой величине.

В металлургии и машиностроении спектральный анализ металлов стал в настоящее время основным методом неразрушающего контроля, перед которым ставятся следующие задачи:

  1. Исследование сплавов в процессе плавки с целью получения сплава нужного состава;
  2. Анализ готовых сплавов с целью определения марки сплава (сортировки), либо точное определение его состава или определение содержания вредных примесей;
  3. Контроль качества готовых изделий;
  4. Контроль правильности применения сплавов при монтаже готовых изделий;
  5. Проверка различного рода покрытий;
  6. Иногда необходимо определять распределение примесей и включений в металле.

Области применения

Методы атомного спектрального анализа, качественного и количественного, разработаны значительно лучше, чем молекулярного, и имеют более широкое практическое применение. Атомные спектральные исследования используют для анализа самых разнообразных объектов. Область его применения очень широка: черная и цветная металлургия, машиностроение, геология, химия, биология, астрофизика и многие другие отрасли науки и промышленности.

Область использования молекулярной спектроскопии в основном охватывает анализ органических веществ, хотя применима и для изучения неорганических соединений. Молекулярный анализ спектров внедряется, главным образом, в химической, нефтеперерабатывающей и химико-фармацевтической промышленности.

Приборы наблюдения спектра

Это осуществляется с помощью оптических приборов – спектральных аппаратов. В этих приборах световые лучи с разными длинами волн отделяются пространственно друг от друга, позволяя проводить изучение спектра исследуемого вещества.

Для визуального наблюдения спектра используются приборы:

  • Спектроскопы – спектр наблюдается визуально;
  • Спектрографы – спектр фотографируется на фотопленку;
  • Монохроматоры – выделяется свет одной длины волны, и его интенсивность может быть зарегистрирована с помощью фотоэлемента

Для измерения спектров используются спектрометры.

Можно выделить следующие стадии изучения спектров:

  1. Получение спектра анализируемой пробы;
  2. Определение длины волны спектральных линий или полос, после чего устанавливают их принадлежность к определенным элементам или соединениям, т. е. находят качественный состав пробы;
  3. Измерение интенсивности спектральных линий или полос, принадлежащих определенным элементам, что позволяет провести количественный спектральный анализ, т.е. найти их концентрацию в анализируемой пробе