Анализ химического состава металлов и сплавов - неотъемлемая часть многих технологических процессов, используемых в различных отраслях промышленности. Исследование позволяет определить присутствия в образце примесей и включений, а также прогнозировать эксплуатационные характеристики готового изделия.
Для решения этой задачи используются анализаторы - надежные и эффективные приборы, способные работать как в производственных, так и лабораторных условиях.
Назначение
Химический анализ позволяет:
- определить количественный состав;
- исследовать образец на присутствие примесей и определить их концентрацию;
- идентифицировать сплав;
- выяснить соотношение примесей сплава для его маркировки.
Проведение исследования необходимо для:
- экспертизы продукции для определения соответствия действующим стандартам;
- непрерывного контроля технологического процесса;
- входного контроля исходного сырья;
- разработки и создания новых сплавов;
- сертификации продукции;
- освидетельствования чистых металлов.
Основные требования
Для проведения химического анализа металлов и сплавов могут быть использованы различные методы. Однако не все они удовлетворяют следующим требованиям:
- максимальная оперативно;
- высокая точность результатов;
- использование неразрушающих методов;
- простота эксперимента;
- применение в производственных условиях.
Методы атомно-эмиссионного спектрального анализа
Атомно-эмиссионный спектральный анализ (АЭСА) металлов и сплавов получил наибольшее распространение в различных отраслях промышленности. С его помощью можно исследовать вещества в различных агрегатных состояниях на присутствие многих химических элементов. Он имеет низкий предел обнаружения элементов, отличается простотой и низкой себестоимостью, что делает целесообразным его использование в лабораториях спектрального анализа металлов, решающих различные аналитические задачи.
Регистрация эмиссионного спектра пробы осуществляется спектрографом, спектроскопом или спектрометром. По этому признаку все способы проведения АЭСА подразделяются на следующие три группы, каждая из которых имеет свою специфику.
Спектрографический
Проводится с использованием спектрографа, который позволяет относительно быстро получить надежные результаты. Метод предусматривает регистрацию атомных спектров на фотопластинку с последующей идентификацией их с помощью планшета или на спектропроекторе.
Преимущества:
- объективность;
- документальность.
Недостатки:
- трудоемкость;
- низкая оперативность.
Спектрометрический
Для исследования пробы применяются приборы с фотоэлектрической регистрацией спектра. Этот вид химического анализа металлов и сплавов относится к объективным методам и позволяет оперативно получать информацию.
Преимущества:
- экспрессность;
- высокая точность результатов;
- полная автоматизация процесса;
- обработка результатов на ЭВМ и их архивирование.
Недостатки:
- сложность эксплуатации оборудования;
- возникновение проблем оптической и электрической стабильности;
- нельзя одновременно регистрировать широкую область спектра.
Визуальный
Отличается от двух предыдущих субъективностью, так как приемником излучения служит человеческий глаз. Несмотря на ограниченные возможности, визуальный спектральный анализ широко используется в промышленности. Особенное значение визуальный метод приобретает при необходимости контроля химического состава легированных сталей в процессе их производства.
Преимущества:
- экспрессность;
- простота;
- проведения анализа в месте нахождения проб;
- низкая стоимость оборудования.
Недостатки:
- невысокая точность результатов;
- не позволяет определять неметаллические элементы.
Заключение
Атомно-эмиссионный спектральный анализ имеет ряд преимуществ по сравнению с другими методами химического анализа.
Он позволяет:
- определять многие элементы бесконтактным способом;
- проводится в кратчайшие сроки;
- обеспечивает высокую точность результатов без необходимости отбора массивных проб.